Using supercomputers to explore nuclear energy


Ever wanted to see a nuclear reactor core in action? A new computer algorithm developed by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory allows scientists to view nuclear fission in much finer detail than ever before. A team of nuclear engineers and computer scientists at Argonne National Laboratory are developing the neutron transport code UNIC, which enables researchers for the first time to obtain a highly detailed description of a nuclear reactor core.

The code could prove crucial in the development of nuclear reactors that are safe, affordable and environmentally friendly. To model the complex geometry of a reactor core requires billions of spatial elements, hundreds of angles and thousands of energy groups — all of which lead to problem sizes with quadrillions of possible solutions.

Such calculations exhaust computer memory of the largest machines, and therefore reactor modeling codes typically rely on various approximations. But approximations limit the predictive capability of computer simulations and leave considerable uncertainty in crucial reactor design and operational parameters.

"The UNIC code is intended to reduce the uncertainties and biases in reactor design calculations by progressively replacing existing multilevel averaging techniques with more direct solution methods based on explicit reactor geometries," said Andrew Siegel, a computational scientist at Argonne and leader of Argonne's reactor simulation group.

UNIC has run successfully at DOE leadership computing facilities, home to some of the world's fastest supercomputers, including the energy-efficient IBM Blue Gene/P at Argonne and the Cray XT5 at Oak Ridge National Laboratory. Although still under development, the code has already produced new scientific results.

In particular, the Argonne team has carried out highly detailed simulations of the Zero Power Reactor experiments on up to 163,840 processor cores of the Blue Gene/P and 222,912 processor cores of the Cray XT5, as well as on 294,912 processor cores of a Blue Gene/P at the Jülich Supercomputing Center in Germany. With UNIC, the researchers have successfully represented the details of the full reactor geometry for the first time and have been able to compare the results directly with the experimental data.

Facts, background information, dossiers
  • supercomputers
  • nuclear reactors
  • Argonne National Laboratory
  • solution
  • nuclear fission
  • memory
More about Argonne National Laboratory
  • News

    Through thick and thin

    What do paint, dishwasher detergent, ketchup and blood have in common? All are composed of particles suspended in a carrier liquid and flow when stirred or forced, but remain thick or even gel-like at rest. That very useful behavior in complex fluids is called shear thinning: their viscosit ... more

    Turning up the heat for perfect (nano)diamonds

    Quantum mechanics, the physics that governs nature at the atomic and subatomic scale, contains a host of new physical phenomena to explore quantum states at the nanoscale. Though tricky, there are ways to exploit these inherently fragile and sensitive systems for quantum sensing. One nascen ... more

    Seeing energized light-active molecules proves quick work for Argonne scientists

    For people who enjoy amusement parks, one of the most thrilling sensations comes at the top of a roller coaster, in the split second between the end of the climb and the rush of the descent. Trying to take a picture at exactly the moment that the roller coaster reaches its zenith can be dif ... more

More about U.S. Department of Energy
  • News

    A most singular nano-imaging technique

    Just as proteins are one of the basic building blocks of biology, nanoparticles can serve as the basic building blocks for next generation materials. In keeping with this parallel between biology and nanotechnology, a proven technique for determining the three dimensional structures of indi ... more

    X-rays and electrons join forces to map catalytic reactions in real-time

    A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real time and under real operating conditions. A team of scientists used a newly developed reaction chamber to combine x-ray absorption spec ... more

    Advanced light source sets microscopy record

    A record-setting X-ray microscopy experiment may have ushered in a new era for nanoscale imaging. Working at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab), a collaboration of researchers used low energy or "soft" X-rays to image structures only f ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE