Next generation of neuroscience tools

13-Sep-2017

UAlberta chemistry professor Robert Campbell is developing new ways to see and manipulate the activity of neurons in the brain, which could revolutionize the way we understand the organ that controls most of the activities of the body.

"We want to help other researchers apply these new neuroscience tools to disorders ranging from chronic pain to brain injuries," said Campbell.

Looking inside the head

Campbell and his research group are developing tools to understand the inner workings of the brain in model organisms such as zebrafish, fruit flies, and mice.

"Right now, we have good methods for visualizing the electrical activity in the brain, but not for seeing neurotransmitters," said Campbell. Using natural fluorescent proteins, such as those in jellyfish and coral, neuroscientists will have new ways of seeing when and to what degree certain neurons are active.

As for manipulating brain activity, including the potential to implant memories, Campbell will be using a protein of his own creation.

"Using our photocleavable protein, we aim to make the connections between neurons either stronger or weaker using light, ultimately implanting certain associations, connections, and possibly even memories within the brain," he explained.

An invaluable toolkit

The tools are highly anticipated by Campbell's colleagues, including neuroscientists, researchers, and collaborators, from across the country. Their labs range in focus from developing models of depression and autism to understanding stroke and everything in between.

"These are the people who are putting the tools to use in health and health care research," explained Campbell. "Our lab is just creating new and better tools to allow them to do their job."

Campbell will receive $1M over the next seven years through the Canadian Institutes of Health Research Foundation Grant to develop the tools.

Facts, background information, dossiers
  • neurons
  • neuroscience
  • brain
  • memories
  • zebrafish
  • neurotransmitters
  • neurochemistry
  • jellyfish
  • fluorescent proteins
  • copyright
  • chronic pain
  • biochemistry
  • University of Alberta
More about University of Alberta
  • News

    New window into the nanoworld

    For the first time ever, scientists have captured images of terahertz electron dynamics of a semiconductor surface on the atomic scale. The successful experiment indicates a bright future for the new and quickly growing sub-field called terahertz scanning tunneling microscopy (THz-STM), pio ... more

    New device detects bacteria and tests for antibiotic resistance

    An interdisciplinary team of engineering and pharmaceutical researchers at the University of Alberta has invented a device that can rapidly identify harmful bacteria and can determine whether it is resistant to antibiotics. The device could save precious hours in patient care and public hea ... more

    Miniaturizable magnetic resonance

    A garnet crystal only one micrometre in diameter was instrumental in a University of Alberta team of physicists creating a route to "lab-on-a-chip" technology for magnetic resonance, a tool to simplify advanced magnetic analysis for device development and interdisciplinary science. "To most ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE