Watching the quantum race of electrons


For the first time ever, a German team of physicists has observed the race of two electrons that are liberated from atoms in the course of photoionization, i.e. under the influence of laser radiation. In order to resolve the electron’s movement during only 50 femtoseconds, scientists from Hamburg and Kiel Universities and DESY (Deutsches Elektronen-Synchrotron – one of the world's leading accelerator centres) used an ultra fast terahertz streak camera in combination with a free-electron-laser. The experimental findings will improve the rapidly evolving free-electron-laser technology used in many fields of science – from physics to biology.

The interaction of electrons is crucial for the properties of atoms and molecules which are the building blocks of living organisms and all man-made systems. Understanding the electronic processes in atoms is therefore essential for numerous future applications – from medicine to engineering.
When a photon of sufficiently high energy hits an atom it may kick out an electron. Albert Einstein termed this process “photo ionization” (photo effect) back in 1905 and thus confirmed a theory of the Kiel scientist Max Planck that would soon revolutionize physics: quantum mechanics. Quantum mechanics predicts that the liberated electron runs away from the atom, behaving like a wave. In the 1920s, Lise Meitner and Pierre Auger independently discovered another effect: When applying specific photon energy during photo ionization, a second electron, termed Auger electron, may be liberated from the atom. In cases when the Auger electron runs in the same direction as the first electron a quantum race of electron waves starts.

This race of the two electrons is extremely fast, taking between 1 and 100 femtoseconds (1fs=0.000 000 000 000 001s). “Until now, no experiment has resolved this race in time”, says Professor Markus Drescher of the Institute for Experimental Physics at Hamburg University, leader of the experimental part of the project. The key to observing the electron race in the current study was to combine the free-electron laser FLASH at DESY in Hamburg with an ultrafast streak camera. By accurately controlling the timing of the two electromagnetic fields generated by the laser and the camera, the scientists were able to reconstruct the electrons’ movement and energy exchange. In this manner, the physicists detected how the Auger electron passes the first one.

At the Institute of Theoretical Physics and Astrophysics of Kiel University, the research group of Professor Michael Bonitz tried to reproduce the experimental results with computer simulations. “After testing several possible explanations for the measured results, our PhD student Sebastian Bauch verified that the experiment indeed observed the quantum race of two electrons”, adds Bonitz. The Kiel physicists collaborate with the experimentalists from Hamburg within the project “FLASH” funded by the German Federal Ministry of Education and Research.

The results give valuable information on key properties of the involved laser pulse. The free electron laser technology has been rapidly evolving in recent years. In this context the present results will be important for improving the quality and precision of future free electron laser experiments.

Christian-Albrechts-Universität zu Kiel (CAU)

Request information now

Recommend news PDF version / Print

Share on

More about Christian-Albrechts-Universität zu Kiel
  • News

    UV-sensors from the oven

    Placed in fire detectors and water treatment units UV-sensors can save lives; also in many areas of industry and environment the demand for these devices is rising steadily. Scientists of Kiel University have been able to ”bake” nanostructures within seconds, in order to fabricate very fast ... more

    Lattice of magnetic vortices

    Physicists at Hamburg and Kiel University and the Forschungszentrum Jülich have found for the first time a regular lattice of magnetic skyrmions – cycloidal vortex spin structures of exceptional stability – on a surface. This fascinating magnetic structure was discovered experimentally at t ... more

    Can genetic information be controlled by light?

    DNA, the molecule that acts as the carrier of genetic information in all forms of life, is highly resistant against alteration by ultraviolet light, but understanding the mechanism for its photostability presents some puzzling problems. A key aspect is the interaction between the four chemi ... more

More about Uni Hamburg
  • News

    X-ray laser reveals chemical reaction

    What happens when a chemical bond is broken? That question was recently answered with the help of a so-called free electron x-ray laser, which makes it possible to follow in real time how bindings in a molecule are changed and broken. The study, published in Science, found, among other thin ... more

    Scientists measure soot particles in flight

    For the first time, air-polluting soot particles have been imaged in flight down to nanometre resolution. Pioneering a new technique, the international team, including researchers from DESY, snapped the most detailed images yet of airborne aerosols. “For the first time we can actually see t ... more

    Lattice of magnetic vortices

    Physicists at Hamburg and Kiel University and the Forschungszentrum Jülich have found for the first time a regular lattice of magnetic skyrmions – cycloidal vortex spin structures of exceptional stability – on a surface. This fascinating magnetic structure was discovered experimentally at t ... more

More about Deutsches Elektronen-Synchroton DESY
  • News

    High-speed camera snaps bio-switch in action

    With a powerful X-ray camera, scientists have watched a genetic switch at work for the first time. The study led by Yun-Xing Wang from the National Cancer Institute of the U.S. reveals the ultrafast dynamics of a riboswitch, a gene regulator that can switch individual genes on and off. The ... more

    New insights about our Earth’s lower mantle

    Using DESY's bright X-ray light source PETRA III, a team of scientists has discovered unexpected facts about the most abundant mineral on Earth. The mineral bridgmanite makes up roughly one third of Earth’s entire volume and is the major component of Earth’s lower mantle. Thus, its physical ... more

    Scientists film exploding nanoparticles

    Using a super X-ray microscope, an international research team has “filmed” the explosion of single nanoparticles. The team led by Tais Gorkhover from Technische Universität Berlin, currently working at the SLAC National Accelerator Laboratory in the U.S. as a fellow of the Volkswagen Found ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE