High-resolution measurement of photocurrents


The continuing trend toward miniaturization in electronics demands the use of new materials. Components made of carbon nanotubes may meet this need – and the properties of single nanotube devices can now be characterized with the required resolution.

Given the demand for further miniaturization of electronic components, current silicon-based technology will soon reach its limits, set by fundamental physical and technical parameters. Minute hollow cylinders made from sheets of carbon, so-called carbon nanotubes, have the potential to exceed these limits. Not only can single carbon nanotubes be utilized as transistors, they can also absorb and emit light.

The walls of these tubes are around 1 nanometer (nm) thick. Ideally, their optical and electrical properties should be characterized at a comparable scale. LMU professorAchim Hartschuhand his team have used an optical antenna – a tiny gold pin with a sharp tip that is irradiated with a laser – to simultaneously measure electrical and optical signals from nanotubes with nanoscale precision. Conventional methods based on confocal microscopy do not attain this level of spatial resolution.

Characterizing devices made of nanotubes

Using an optical antenna allows one to amplify the signals emitted by single nanotubes and map these with very high resolution. “In our study, we have measured photocurrents along single carbon nanotubes with a resolution of less than 30 nm,” says Hartschuh. He and his colleagues have already used this method, called tip-amplified optical near-field microscopy, in many other settings, and have now developed it still further.

The spatial resolution of the photocurrent measurements corresponds closely to the theoretically expected level. And Hartschuh, who is a member of LMU’s Center for NanoScience (CeNS) and is involved in the Nanosystems Initiative Munich (NIM) points to further possible applications of the technique:  “In addition to the carbon nanotubes employed here, our method could be applied to inorganic semiconducting nanowires, and perhaps to solar cells and the materials used to fabricate them,” he says.

Original publication:
Nina Rauhut et al.; Antenna-Enhanced Photocurrent Microscopy on Single-Walled Carbon Nanotubes at 30 nm Resolution; ACS Nano

Ludwig-Maximilians-Universität München (LMU)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • carbon nanotubes
  • nanotubes
  • LMU
  • electronics
More about LMU
  • News

    Bacterial defense policies

    High-resolution cryo-electron microscopy has now revealed in unprecedented detail the structural changes in the bacterial ribosome which results in resistance to the antibiotic erythromycin. Multiresistant bacterial pathogens that are insensitive to virtually all available antibiotics are o ... more

    Tracing how the embryo takes over

    Embryonic development is initially controlled by maternal genetic information stored in the egg. LMU researchers now describe a methodology that allows the succeeding activation of the zygotic genome to be mapped at high resolution. In multicellular organisms, the earliest steps in embryoni ... more

    200-year long dispute resolved: First direct evidence that elemental fluorine occurs in nature

    Fluorine is the most reactive chemical element. That is why it is not found in nature in its elemental form, but only in compounds, such as fluorite – that was the accepted scientific doctrine so far. A special fluorite, the “fetid fluorite” or “antozonite”, has been the subject of many dis ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE