Elemental and magnetic imaging using X-rays and a microscope


A team of researchers has developed a new microscope that can image the elemental and magnetic properties of a wide range of energy-important materials that are used in devices such as solar cells and solid-state lighting.

The imager is based on a technique known as X-ray excited luminescence microscopy (XELM). It was created by hitching a standard optical microscope to a synchrotron X-ray source. Synchrotrons produce X-rays and other forms of electromagnetic radiation by sending electrons on a curved path at nearly the speed of light.

When the X-rays strike the material being imaged, some of them are absorbed, which causes the sample to luminesce. The microscope portion of the imager is able to detect differences in this luminescence, which is directly related to both the elements in the sample and their magnetic properties. This technique combines the spatial resolution of optical microscopy with the element and magnetic specificity and precision of synchrotron radiation.

It is able to spatially resolve features as small as one micron. However, this value was degraded in practice due to vibrations or subtle shifting of the systems used to direct the X-ray beam, though future refinements should alleviate any stability issues.

XELM has some advantages over other techniques in that it is especially useful at low temperatures and can image in the presence of electric and magnetic fields. The results were accepted for publication in the American Institute of Physics' journal Review of Scientific Instruments.

Original publication:

R.A. Rosenberg et al.; Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy; Review of Scientific Instruments

American Institute of Physics (AIP)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
More about American Institute of Physics
  • News

    Turning up the heat for perfect (nano)diamonds

    Quantum mechanics, the physics that governs nature at the atomic and subatomic scale, contains a host of new physical phenomena to explore quantum states at the nanoscale. Though tricky, there are ways to exploit these inherently fragile and sensitive systems for quantum sensing. One nascen ... more

    Understanding breakups

    As interest and demand for nanotechnology continues to rise, so will the need for nanoscale printing and spraying, which relies on depositing tiny drops of liquid onto a surface. Now researchers from Tsinghua University in Beijing have developed a new theory that describes how such a nanosi ... more

    New model developed to study inflammatory bowel disease in human biopsy samples

    Inflammatory bowel disease (IBD) is a complex condition that requires a lifetime of care and increases a person's cancer risk. But its origins are still a mystery. Now, a team of researchers have created a new culture model of the human intestine where living tissue from a patient biopsy ca ... more

More about Argonne National Laboratory
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE