CU-Boulder physicists use ultrafast lasers to create first tabletop X-ray device

12-Jun-2012

An international research team led by the University of Colorado Boulder has generated the first laser-like beams of X-rays from a tabletop device, paving the way for major advances in many fields including medicine, biology and nanotechnology development.

For half a century, scientists have been trying to figure out how to build a cost-effective and reasonably sized X-ray laser that could, among other things, provide super-high-resolution imaging, according to Henry Kapteyn, a CU-Boulder physics professor and fellow at JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology. Such a device also could be used by scientists to peer into a single cell or chemical reaction to gain a better understanding of the nanoworld.

Most of today's X-ray lasers require so much power that they rely on facilities the size of football stadiums or larger, making their use impractical. To avoid the need for a large energy source to power an X-ray laser, the CU-Boulder researchers have created a tabletop device that uses atoms in a gas to efficiently combine more than 5,000 low-energy mid-infrared laser photons to generate each high-energy X-ray photon, said Margaret Murnane, a CU-Boulder physics professor and JILA fellow who is co-leading the research efforts.

"Because X-ray wavelengths are 1,000 times shorter than visible light and they penetrate materials, these coherent X-ray beams promise revolutionary new capabilities for understanding and controlling how the nanoworld works on its fundamental time and length scales," Murnane said. "Understanding the nanoworld is needed to design and optimize next-generation electronics, data and energy storage devices and medical diagnostics."

The findings appear in Science.

The tabletop device - an X-ray tube in the soft X-ray region - produces a bright, directed beam of X-rays by ensuring that all of the atoms in a multi-atmosphere pressure gas emit X-rays, according to Kapteyn.

"As an added advantage, the X-rays emerge as very short bursts of light that can capture the fastest processes in our physical world, including imaging the motions of electrons," Kapteyn said.

Laser beams, which are visible light, represent one of the best ways to concentrate energy and have been a huge benefit to society by enabling the Internet, DVD players, laser surgery and a host of other uses.

"However, the same revolution that happened for visible light sources that made it possible to create laser-like beams of light for widespread use instead of multidirectional light from a light bulb, is only now happening for X-rays," Kapteyn said.

Facts, background information, dossiers
  • University of Colorado
  • X-ray lasers
  • X-ray tubes
More about University of Colorado
  • News

    Association between gene mutation and rare heart disease found

    A strong association between a genetic mutation and a rare kind of heart muscle disease has been discovered by researchers at the University of Colorado Anschutz Medical Campus. The finding could improve understanding of the disease and lead to new treatments. "There are many kinds of cardi ... more

    A new window on mitochondria division

    A new University of Colorado Boulder study shows for the first time the final stages of how mitochondria, the sausage-shaped, power-generating organelles found in nearly all living cells, regularly divide and propagate. In 2011, CU Boulder Associate Professor Gia Voeltz and her colleagues s ... more

    Life-preserver microbubbles float tumor cells for analysis

    A University of Colorado Cancer Center study presented at the American Association for Cancer Research Annual Meeting 2016 demonstrates the use of gas microbubbles to selectively attach to and float circulating tumor cells from blood samples, allowing analysis of the isolated cells. "Microb ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE