Video reveals wave character of particles

Wave properties of individual heavy molecules can also be observed experimentally

T. Juffmann et al.

Every individual molecule fluoresces and becomes part of the interference pattern. Figures a through e show the states after 0, 2, 20, 40 and 90 minutes, respectively.

30-03-2012: Quantum theory describes the world of atoms very precisely. Still, it defies our macroscopic conception of everyday's world due to its many anti-intuitive predictions. The wave-particle dualism probably is the best known example and means that matter may spread and interfere like waves. Now, an international team of researchers has recorded the interference process of individual molecules. The recordings were published by the journal Nature Nanotechnology online.

"Seeing how the interference pattern develops with every light spot, molecule after molecule, and how a basic principle of quantum mechanics is visualized enhances our understanding of the atomic world," explains Professor Marcel Mayor, who conducts research and teaches at Karlsruhe Institute of Technology and the University of Basel.

For the experiment performed in cooperation with colleagues from the universities of Vienna and Tel Aviv, Mayor synthesized fluorescent phtalocyanin molecules having an atomic mass of up to 1298 AMU and consisting of up to 114 atoms. Then, the molecules were accelerated, sent as a slow beam through an optical grating, and deposited on the entrance vacuum window, where they were excited to fluoresce by a laser. For a period of 90 minutes, a fluorescence microscope observed the build-up of the interference pattern. Its setup has a sufficient sensitivity to exactly locate every individual molecule on the window with a precision of about 10 nanometers.

In the future, the setup might be used to study the so-called van-der-Waals interaction between molecules in the beam and those in the grating, which is reflected rather sensitively by the interference pattern. Researchers are also interested in finding out from which size and under which conditions particles behave quantum mechanically or classically, i.e. in the so-called decoherence. These findings may be the basis for novel applications, such as quantum computers. "But the many insights given by this experiment into the quantum world and its boundaries already are of high value," Mayor agrees with many experts, among others Bum Suk Zhao and Wieland Schöllkopf from the Fritz Haber Institute, Berlin, who evaluate the experiment in the accompanying comment article in the same journal.

Original publication:
"Real-time single-molecule imaging of quantum interference", T. Juffmann et al., Nature Nanotechnology

Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • Universität Basel
  • Universität Wien
  • Tel Aviv University
More about Helmholtz-Gemeinschaft
  • News

    Minerals and ores in a chemical photo lab

    A unique colour X-ray camera goes into operation at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) today. With this camera, it will be possible for the researchers at the Helmholtz Institute Freiberg for Resource Technology (HIF), a part of the HZDR, to determine within a very short period ... more

    Luminous bacterial proteins detect chemicals in water

    While residual medications don’t belong in the water, trace metals from industrial process waters handled by the recycling industry are, in contrast, valuable resources. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have developed a simple color sensor principle which facili ... more

More about KIT
  • News

    More accurate modelling of electron transfer in DNA

    Scientists using computational techniques to look at processes in DNA have employed a surface-hopping approach to predict the degree of charge localisation across nucleobases. The technique should allow more accurate modeling of the effects of charge transfer within the molecule. Different ... more

    Nanoparticles digging the world’s smallest tunnels

    The world’s smallest tunnels have a width of a few nanometers only. Researchers from Karlsruhe Institute of Technology (KIT) and Rice University, USA, have dug such tunnels into graphite samples. This will allow structuring of the interior of materials through self-organization in the nanom ... more

    Processes at the Surface of Catalysts

    In chemical industry, heterogeneous catalysis is of crucial importance to the manufacture of basic or fine chemicals, in catalytic converters of exhaust gas, or for the chemical storage of solar energy. Scientists of Karlsruhe Institute of Technology (KIT) and Ruhr-Universität Bochum (RUB) ... more

More about Universität Basel
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE