Bioelectronics: Invention of the pH imaging microscope for applications including treatment of Alzheimer’s disease.


The pH and optical images from the pH image sensor

pH image sensor system

The pH image sensor was invented by Kazuaki Sawada of Toyohashi University of Technology (Toyohashi Tech). The device enables two dimensional and simultaneous visualization of the pH and optical imaging of chemical activity of solutions and cell activity. Sawada and his group are looking for industrial partners for the development of other applications of the pH image sensor.

The CMOS device consists of an array of CCDs covered with functionalized membrane. Changes in the concentration and two dimensional distribution of hydrogen ions are detected by charge accumulation. In addition to monitoring the pH distribution, the device also yields optical images of the test sample.

The sensitivity of the pH imaging sensor is 100 times greater than ISFET devices and enables the determination of pH differences of 0.0001 pH. "High sensitivity is possible because we accumulate charge over well-defined periods of time," says Sawada. "The charge transfer is repeated many times, which gives huge improvements in signal to noise ratio."

The current pH image sensors consist of 128 x128 pixels, each with a sensing area of 10 x25 micrometers. Sawada and his group are developing pH image sensors with one million pixels, with each pixel being 10 x10 micrometers. "I have also launched a pH imaging consortium to address issues related to ion image sensing,” says Sawada. “In the future plans include pH imaging devices for visualizing the movement and distribution of other ions including as calcium and sodium."

Sawada's group has recently reported on the use of the sensor for real time imaging of acetylcholine (ACh) enzyme reactions. “We imaged changes in the distribution of Ach when nerve cells are stimulated with KCL,” says Sawada. “Insights in the variation of the concentration of ACh may lead to new methods for the treatment of Alzheimer’s disease.”

Facts, background information, dossiers
  • Toyohashi University
  • pH sensors
More about Toyohashi University of Technology
  • News

    Revolutionizing electronics using Kirigami

    A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed an ultrastretchable bioprobe using Kirigami designs. The Kirigami-based biopr ... more

    Microhotplates for a smart gas sensor

    Gas sensors used for leakage alerts and air quality monitoring are essential in our daily lives. Towards a ubiquitous society, smart gas sensors, which perform signal processing and communication besides sensing, have attracted much attention. In addition, integrating these functions into a ... more

    Detecting small metallic contaminants in food via magnetization

    The detection of metallic contaminants in foods is important for our health and safety. However, existing inspection methods have limitations. For instance, the X-ray radiation method cannot detect contaminants with sizes smaller than 1 mm with current practical X-ray levels, and it cannot ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE