Max Planck Innovation grants rights for developing new nanoscopic method to Leica Microsystems

15-Oct-2009

Max Planck Innovation, the technology transfer organization of the Max Planck Society, grants Leica Microsystems, Wetzlar, an exclusive license for implementing the latest generation of optical microscopes with a resolution far below the diffraction limit (nanoscopes). This innovative optical nanoscopy, named GSDIM (ground state depletion microscopy followed by individual molecule return), achieves image resolutions in the nanometer range - even in conventional wide field microscopes. GSDIM was developed by Professor Stefan Hell, director at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, and his team.

True-to-detail imaging of the spatial arrangement of proteins and other biomolecules in cells and observing molecular processes - GSDIM makes this possible for researchers due to resolutions beyond the diffraction limit. The more insight science gains into these basic processes of life, the better it can find the causes of previously incurable diseases and develop suitable therapies.

One of the strengths of GSDIM is that it uses conventional fluorescence markers to image proteins or other biomolecules within the cells with sharpness down to a few nanometers. This includes fluorophores, which are routinely used in biomedical work, such as fluorescent proteins and rhodamines.

With GSDIM, the fluorescent molecules in the specimen are almost completely switched off using laser light. However, individual molecules spontaneously return to the fluorescent state, while their neighbours remain non-illuminating. In this way, the signals of individual molecules can be acquired sequentially using a highly sensitive camera system and their spatial position in the specimen can be measured and stored. An extremely high-resolution image can then be created from the position of many thousands of molecules. This enables cell components that are situated very close to one another and cannot be resolved using conventional wide field fluorescence microscopy to be spatially separated and sharply reproduced in an image.

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • proteins
  • Max-Planck-Innovation
  • Leica
  • technology transfer
  • Stefan Hell
  • Germany
  • fluorescent proteins
  • fluorescence microscopy
  • fluorescence markers
  • diseases
  • chemistry
More about Max-Planck-Gesellschaft
  • News

    The self-driving microscope

    Light-sheet microscopy is one of the most powerful method for imaging the development and function of whole living organisms. However, achieving high-resolution images with these microscopes requires manual adjustments during imaging. Researchers of the Max Planck Institute of Molecular Cel ... more

    labfolder signs agreement with Max Planck Society

    labfolder GmbH and the Max Planck Society announced a licensing agreement to provide up to 11,000 Max Planck scientists with labfolder's laboratory data management digital platform. This is the first time that a tool for digital laboratory data management is being provided across an entire ... more

    Why is Usain Bolt the fastest person on Earth?

    Twenty metres before the finish line Usain Bolt already opens his arms in triumph and ramps up his speed: even with his “handbrake” on, at 9.58 seconds, he runs the 100 metre stretch faster than anyone ever before in 2009 in Berlin. In the process, he reached a maximum speed of almost 45 ki ... more

More about MPI für biophysikalische Chemie
More about Max-Planck-Innovation
More about Leica
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE