Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Nachweis vieler Krankheitsmarker mit einer Analyse

20.10.2017

© Fraunhofer ILT, Aachen / aligator kommunikation

Struktur des Sortier-Chips für die Sortierung von Zellen und Partikeln mit Laserlicht.

© Fraunhofer ILT, Aachen / Volker Lannert

ortier-Chip zur Analyse und Isolation von Zellen in einer Blutprobe.

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren Mikrofluidik-Chip, dessen optische Sensoren und Schalter über Lichtleitfasern an den Chip angebunden sind. Die Funktionsweises dieses »Microchip Based Fluorescence Activated Cell Sorter«, µFACS, ist nachfolgend beschrieben: Die über Fluoreszenz zu analysierenden Biomoleküle und Zellen werden durch einen mikrofluidischen Kanal geführt und am Ort der optischen Messung hydrodynamisch auf einen Querschnitt von 10 µm fokussiert. Laserlicht aus einer optischen Faser regt den Analyten im mikrofluidischen Kanal zur Fluoreszenz an. Mikrooptiken fokussieren das aus der Faser austretende Laserlicht in den mikrofluidischen Kanal, sammeln das dort entstehende Fluoreszenzlicht und führen es über optische Fasern zum Fotodetektor. Dies erlaubt eine deutliche Reduktion des Bauraums und erhöht die Robustheit des µFACS gegenüber dem Stand der Technik. Die »AnaLighter-Technologie« eignet sich daher hervorragend für automatisierte Diagnostikanwendungen im 24/7-Betrieb.

Ferner können durch Fasersplittertechnik kostengünstig mehrere optische Anregungskanäle aus einem Laserstrahl generiert werden. »Der Vorteil unseres µFACS« erläutert der Leiter der Gruppe Klinische Diagnostik am Fraunhofer ILT, Dr. Achim Lenenbach, »liegt in seinen applikationsangepassten kundenspezifischen Lösungen«.

Multispektrale Detektion

Je nach Anwendung können die Aachener Experten die »AnaLighter-Technologie« individuell anpassen: Über standardisierte Faserschnittstellen können Wellenlängen ausgetauscht und leicht an eine spezielle Messaufgabe ohne zusätzlichen Justageaufwand angepasst werden. Mehrere Wellenlängen können in einer Faser überlagert und für multispektrale Messungen genutzt werden. Aktuell steht Anwendern ein System mit 16 Detektionskanälen unter Verwendung 6 verschiedener Anregungswellenlängen zur Verfügung. Das bedeutet, dass gleichzeitig 16 verschiedene Spezies detektiert werden können. Die Zahl der Detektionskanäle stellt aber keine prinzipielle Limitierung dar und ist bei Bedarf erweiterbar.

Eine Besonderheit der »AnaLighter-Technologie« ist die opto-fluidische Sortierfunktion. Sie beruht darauf, dass die Viskosität des Fluids mit Infrarot-Laserstrahlung thermisch beeinflusst wird. Durch Aufheizen des Fluids vor einer Verzweigung wird der Flüssigkeitsstrom zusammen mit dem vor der Verzweigung nachgewiesenen Analyten umgelenkt und separiert. Auf diese Weise können Biomoleküle oder Zellen aussortiert und in Probengefäßen auf dem Fluidik-Chip zur weiteren Untersuchung abgelegt werden. Durch die serielle Anordnung von Verzweigungen sind auch komplexe Sortieraufgaben zum Auftrennen verschiedener Spezies lösbar.

Multiplexdiagnostik: Nachweis vieler Krankheitsmarker mit einer Analyse

Die spektral separierten Detektionskanäle des »AnaLighter« können unterschiedliche Markermoleküle im Blut gleichzeitig nachweisen. Bei einer solchen Multiplexdiagnostik werden diese Markermoleküle aus einer Blutprobe durch ein Gemisch von Mikropartikeln spezifisch gebunden, wobei jede Partikelspezies genau eine nachzuweisende Molekülspezies bindet. Der Nachweis gebundener Markermoleküle wird über ein charakteristisches Fluoreszenzlabel kodiert und dessen Signal von einem der sechszehn Detektionskanäle gemessen. Eine solche Multiplexdiagnostik weist bis zu sechzehn verschiedene Krankheitsmarker mit nur einem Messdurchlauf nach. In den jährlichen Routinechecks beim Hausarzt könnten so mit einem einzigen Bluttest eine Vielzahl möglicher Erkrankungen früh diagnostiziert werden, um damit Volkskrankheiten wie z.B. Herz-Kreislauf-Erkrankungen vorzubeugen.

Tumorfrüherkennung

Die µFACS-Technologie des Fraunhofer ILT kann im Gegensatz zu herkömmlichen FACS-Systemen neben wässrigen Lösungen auch Wasser-in-Öl Emulsionen prozessieren. Dabei werden wenige Mikrometer große wässrige Tröpfchen in einem öligen Fluid als Trägermedium durch den fluidischen Kanal geführt. Die wässrigen Tröpfchen können als abgeschlossene Reaktionsvolumina für Screening-Anwendungen in der Chemie oder Biotechnologie verwendet werden. Die Sortierfunktion bietet zudem die Möglichkeit, beim Screening die geeigneten Kandidaten abzulegen, um z.B. bei gentechnisch veränderten Varianten die relevanten Gensequenzen zur Verfügung zu stellen.

Fraunhofer-Institut für Lasertechnik (ILT)

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Fluoreszenz
  • Markermoleküle
  • Multiplexdiagnostik
  • Diagnostik
Mehr über Fraunhofer-Institut ILT
  • News

    Mit Photonen im Trüben messen

    Vielfältige chemische und biotechnologische Prozesse sind mit dem Entstehen, dem Wachstum oder der Veränderung von Partikeln verbunden. Eine detaillierte Beobachtung von Partikelgröße und Partikelanzahl im laufenden Prozess ohne zeit- und arbeitsaufwändige Probenentnahme soll die Überwachun ... mehr

    Laser-Prozesssimulation erstmals auch als App

    Die Simulation von Prozessen bei der Lasermaterialbearbeitung ist in den letzten Jahren immer besser geworden. Die Software kann heute relativ gut voraussagen, was am Werkstück passiert. Leider ist sie hochkomplex und erfordert viel Rechenzeit. Durch eine clevere Vereinfachung können Expert ... mehr

    Blutvergiftung: Schnellere Analyse von Resistenzen

    Bei einer Blutvergiftung greifen Ärzte umgehend zu einem Breitbandantibiotikum. Doch vielfach kann das Medikament den Keimen nichts anhaben. Die Untersuchung auf Antibiotikaresistenzen ist jedoch zeitaufwändig, für viele Patienten kommen die Ergebnisse zu spät. Ein neues Verfahren liefert d ... mehr

Mehr über Fraunhofer-Gesellschaft
  • News

    Tiefe Einblicke mit konfokaler Mikroskopie

    In der Pharmazie ist es wichtig zu verstehen, wie ein medizinischer Wirkstoff mit körpereigenen Stoffen reagiert. Doch bisher sind nur Messungen nach Ablauf der Reaktion möglich – wie die Interaktion im Einzelnen genau vonstattengeht, ist unklar. Fraunhofer-Wissenschaftler haben jetzt eine ... mehr

    Labor im Beutel

    Humane Stammzellen gelten als Hoffnungsträger der Medizin – in Zukunft sollen sie die Therapie von vielen Leiden wie etwa neurodegenerativen Erkrankungen ermöglichen. Mit LabBag® haben Fraunhofer-Forscher ein All-in-One-System in Form eines transparenten Beutels entwickelt, in dem sich Stam ... mehr

    Per Smartphone schnell und einfach Krankheitsindikatoren im Blut nachweisen?

    Befinden sich Krankheitserreger im Blut? Sind Toxine im Essen enthalten? Künftig sollen sich solche Fragen schnell und einfach zuhause über einen kleinen Fluoreszenz-Chip und das Smartphone beantworten lassen. Die nötigen Objekte – genauer gesagt Lampe und Detektor – könnten kostengünstig i ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.