Untersuchung molekularer Chiralität auf einer Sub-Femtosekunden Zeitskala

10.09.2015 - Deutschland

In linearer chiroptischer Spektroskopie ist die chirale Reaktion, die oftmals als "chiraler Dichroismus" bezeichnet wird, sehr gering, im Bereich von 10-4 - 10-5 einer normalen linearen optischen Reaktion, wie Lichtabsorption. Dies stellt eine große Herausforderung an zeitaufgelöste Messungen dar.

Ein neuer Ansatz basiert auf Hohe-Harmonische-Spektroskopie. Hohe-Harmonische Erzeugung findet statt, wenn ein intensiver Femtosekunden-Laserpuls in ein Gas fokussiert wird. Sie kann als eine Abfolge von drei Schritten verstanden werden: Ionisation in einem starken Infrarotfeld, laser-induzierte Beschleunigung des freigesetzten Elektrons, und dessen Rekombination mit dem Mutterion, alles innerhalb eines Laserzyklus. Die Rekombination führt zur Emission kohärenter Strahlung, welche sich vom Vakuum-Ultraviolett bis hin zum Bereich der weichen Röntgenstrahlung erstreckt.

Die Forscher untersuchten, wie die chirale Struktur des Moleküls diesen Prozess beeinflusst. Während das freigesetzte Elektron vom Laserfeld getrieben wird, geschieht das Gleiche mit dem Elektronenloch. Mehr noch, die laser-getriebene Lochbewegung ist chiral und enantio-empfindlich aufgrund der chiralen Struktur des Moleküls. Wenn das zurückkehrende Elektron mit dem Loch rekombiniert, macht die enantio-empfindliche Natur der Lochbewegung das emittierte Licht enantio-empfindlich. Infolgedessen ist eine sehr geringe Elliptizität des Antriebslaserfeldes, im Bereich von ungefähr 1 %, ausreichend, um zwischen den Harmonischen, die von links- bzw. rechtshändigen Molekülen emittiert werden, zu unterscheiden, mit Signalen die 2-3 % unterschiedlich sind.

Hohe-Harmonische Erzeugung kann als Pump-Probe-Spektroskopie angesehen werden. Ionisation hat die Funktion des Pumpens und startet die Elektron-Loch-Dynamik. Rekombination dient als Sonde, die die Elektron-Loch-Dynamik mittels des emittierten Lichtes abbildet. Die Pump-Probe Verzögerung ist durch die Schwingungen des Laserfeldes, welches das Elektron antreibt, gesteuert. Die Energie des zurückkehrenden Elektrons ist davon abhängig, wieviel Zeit es im Feld verbracht hat. Daher werden Harmonische mit unterschiedlichen Energien, zu unterschiedlichen Zeiten emittiert, was eine Zuordnung zwischen der Harmonischen-Ordnung und der Pump-Probe Verzögerung erlaubt. Kurz gesagt, die Harmonischen-Emission zeichnet einen Film des rekombinierenden Systems auf, wobei jede Harmonische ein Einzelbild des Films darstellt. Eine riesige Bandbreite des harmonischen Spektrums führt zu einer sehr hohen zeitlichen Auflösung, etwa 0,1 fs oder besser. Die Forscher haben diese Eigenschaft genutzt, um aus dem experimentell gemessenen chiralen Dichroismums die chirale Komponente der Lochdynamik, mit einer Auflösung von 0,1 fs zu rekonstruieren.

MBI

Berechnungen zur Elliptizitäts-Abhängigkeit des Hohe-Harmonische Signals in S-Epoxypropan (a) und R-Epoxypropan (b) bestätigen, dass das chiral-empfindliche Signal besonders stark um die Harmonischen 41-43 ist, wo die primären (chiral-unempfindlichen) Hohe-Harmonische Kanäle XX und AA destruktiv interferieren. Für jede Harmonische wurde das Signal mit ihrem entsprechenden Elliptizitäts-abhängigen Maximum normiert.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Erkennen, Verstehen, Heilen: Die Welt der Diagnostik

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
5+ White Paper
15+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
5+ White Paper
15+ Broschüren