Super-Mikroskop misst Schwingungen von Elektronen

22.08.2011

Walter Pfeiffer, Bielefeld University

Mit ultrakurzen Laserimpulsen (rot) lassen sich an der Oberfläche einer Nanostruktur die Schwingungen von Elektronen (rote Kugeln) messen.

Ein neuartiges High-Tech-Mikroskop haben Forscher aus Bielefeld, Kaiserslautern und Würzburg entwickelt: Es stellt Objekte millionenfach vergrößert und Bewegungen um eine Million Milliarden Mal verlangsamt dar.

Mit der neu entwickelten Technik lassen sich extrem schnelle Prozesse in winzigsten Objekten verfolgen – mit einer bislang einzigartigen räumlichen und zeitlichen Auflösung. „Wir haben damit erstmals festgestellt, wie lange die Schwingungen von Elektronen in einer einzelnen Nanostruktur andauern“, sagt Professor Tobias Brixner vom Institut für Physikalische und Theoretische Chemie der Universität Würzburg.

Bei den Analysen zeigte sich: Die kollektive Elektronenbewegung nach der Anregung einer Silber-Nanostruktur mit Licht hält an einzelnen Stellen bis zu 20 Mal länger an als bisher vermutet. Die Dauer der Elektronenschwingung ist nicht nur für die Grundlagenforschung interessant. Sie hat auch entscheidenden Einfluss auf die Effizienz von Energietransportprozessen, wie sie zum Beispiel in Solarzellen oder bei der Photosynthese der Pflanzen ablaufen.

„Unsere neue Methode wird es in der Zukunft ermöglichen, in vielen natürlich und künstlich nanostrukturierten Materialien sehr schnelle Vorgänge zu verfolgen“, so die Wissenschaftler.

Das Forschungsteam und seine Förderer

Ihre neue Analysemethode für extrem schnelle Vorgänge im Nanometer-Bereich präsentieren die Teams der Professoren Martin Aeschlimann (Kaiserslautern), Tobias Brixner (Würzburg) und Walter Pfeiffer (Bielefeld) am 11. August 2011 im  Wissenschaftsmagazin „Science“. Die Deutsche Forschungsgemeinschaft (DFG) hat das Projekt der drei Forschungsgruppen in ihrem Schwerpunktprogramm „Ultrafast Nano-Optics“ gefördert.

Elektronenmikroskopie mit Laser-Blitzen kombiniert

Wie den Kooperationspartnern dieser Erfolg gelang? Sie haben die Vorteile eines Elektronenmikroskops mit der Anregung durch ultrakurze Laser-Lichtblitze und der damit erreichbaren hohen Zeitauflösung kombiniert. Dadurch erkennen sie zehn Mal feinere Strukturen als mit optischen Mikroskopen und verfolgen die zeitliche Entwicklung der Objekteigenschaften mit der extrem hohen Zeitauflösung von wenigen Femtosekunden – eine unvorstellbar kurze Zeit, „in der ein Düsenjet eine Strecke zurücklegt, die kleiner ist als der Durchmesser eines Atoms“, wie Professor Brixner vergleicht.

Um superschnelle Vorgänge im Mikrokosmos verfolgen zu können, setzten die Forscher eine komplexe Folge von ultrakurzen Laserimpulsen ein, die Experten als „kohärente zweidimensionale Spektroskopie“ bezeichnen. Mit einer neu entwickelten Abfolge von Laserimpulsen und dem Nachweis der dabei emittierten Elektronen gelangten die Physiker und Physikochemiker schließlich ans Ziel.

Originalveröffentlichung:

Martin Aeschlimann et al.; „Coherent Two-Dimensional Nanoscopy"; Science

Julius-Maximilians-Universität Würzburg

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Uni Würzburg
  • Universität Bielefeld
  • Technische Universi…
Mehr über Uni Würzburg
  • News

    Erstmals einzelne Rezeptoren live beobachtet

    Mit einer revolutionären Mikroskopie-Technik hat ein Team von Wissenschaftlern erstmals Rezeptoren, die die Wirkung von Hormonen und Medikamenten vermitteln, live beobachtet. Dabei stießen sie auf überraschende Details. Bei der Suche nach neuen Medikamenten gegen Krankheiten wie Bluthochdru ... mehr

    Wie Rezeptoren für Medikamente im Zellinneren arbeiten

    G-Protein-gekoppelte Rezeptoren sind für viele Medikamente der zentrale Angriffspunkt. Würzburger Wissenschaftler konnten jetzt genauer zeigen, wie diese Rezeptoren im Zellinneren wirken. G-Protein-gekoppelten Rezeptoren (GPCRs) werden zu Hunderten im menschlichen Erbgut kodiert. Sie bilden ... mehr

    Kaugummi-Schnelltest bei Entzündungen

    Zahnimplantate ziehen bisweilen Komplikationen nach sich: Bei sechs bis fünfzehn Prozent der Patienten entsteht in den Jahren nach dem Setzen des Implantats eine Entzündung. Verursacht wird sie von Bakterien; schlimmstenfalls zerstört sie das weiche Gewebe und den Knochen rund um das Implan ... mehr

Mehr über TU Kaiserslautern
Mehr über Uni Bielefeld
  • News

    Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

    Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch „Nanoskopie“ genannt, mit herkömmlichen Mikroskopen ermöglicht. Bei der Nanoskopie wird die Position einzelner fluoreszierender Moleküle mit ei ... mehr

    Nanoinjektion steigert Überlebensrate von Zellen

    Wie entwickeln sich Tumore? Und wie wandeln Bakterien harmlose Substanzen in medizinische Wirkstoffe um? Wenn Biophysiker verstehen wollen, was in lebenden Zellen vorgeht, müssen sie Farbstoffe oder andere Fremdmoleküle hineinbringen. Um die Zellwand zu überwinden, ohne die Zelle dauerhaft ... mehr

    Raumschiff Enterprise Konzept: Optischer Traktorstrahl hält Bakterien fest

    Wenn Naturwissenschaftler Blutzellen, Algen oder Bakterien mit dem Mikroskop untersuchen wollen, müssen sie diese Zellen bisher auf Trägermaterial, etwa Glasplättchen, befestigen. Physiker der Universitäten Bielefeld und Frankfurt am Main haben eine Methode entwickelt, mit der sich biologis ... mehr

Themenschwerpunkte
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.