Nano-Motor mit Lichtschalter: Lichtaktivierbares Myosin für Echtzeituntersuchungen in Zellen

11.05.2011

Molekulare „Motoren“ sind die Basis für die meisten biologischen Bewegungen. Sie setzen Zellbestandteile, ganze Zellen oder auch unsere Muskeln zielgerichtet in Bewegung. Barbara Imperiali und ein Team vom Massachusetts Institute of Technology (Cambridge, USA), der University of Virginia (Charlottesville, USA) und den National Institutes of Health (USA) haben das Motorprotein Myosin nun mit einem „Anschaltknopf“ versehen, der durch Licht ausgelöst wird. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, sollen damit zelluläre Prozesse, an denen Myosin beteiligt ist, in Echtzeit verfolgt werden.

Damit sich unsere Muskeln zusammenziehen, müssen zwei Sorten fadenförmiger Proteine, Myosin und Actin, wechselwirken. Angetrieben durch Spaltung des zellulären „Treibstoffs“ Adenosintriphosphat (ATP) „hangeln“ sich die „Köpfchen“ der Myosinmoleküle dabei an den Actinfilamenten entlang. In Nicht-Muskelzellen sorgt Myosin beispielsweise bei der Zellteilung dafür, dass sich die Zelle einschnürt. Myosin besteht aus mehreren verschiedenen Proteinketten. Die Aktivität des nicht-muskulären Myosins wird durch dessen so genannte regulatorische leichte Kette reguliert. Sobald eine Phosphatgruppe an eine bestimmte Bindungsstelle (Ser19) der leichten Kette bindet (Phosphorylierung), wird Myosin aktiviert. Die Aktivität lässt sich durch Bindung einer zweiten Phosphatgruppe an benachbarter Stelle (Thr18) weiter verstärken.

Myosin wurde bereits intensiv untersucht. Was genau nach Aktivierung des Moleküls in lebenden Zellen passiert, konnte bisher jedoch nicht räumlich und zeitlich aufgelöst untersucht werden. Das Forscherteam hat nun einen Kniff gefunden, wie sich solche Echtzeituntersuchungen realisieren lassen: Ein Myosinmolekül, das sich mit Licht definiert „anknipsen“ lässt. Dazu stellten die Forscher per Proteinsemisynthese eine künstliche regulatorische Kette her, die bereits eine bzw. zwei Phosphatgruppen trägt. Der Trick: Über die Phosphatgruppen wird ein „Käfig“ gestülpt. In dieser Form ist die Kette inaktiv. Bestrahlung mit Licht spaltet den Käfig ab, die regulatorische Kette ist nun auf „an“ geschaltet und aktiviert ihrerseits das Myosin.

Die Forscher tauschten die natürliche leichte Kette von Myosinmolekülen gegen die künstliche aus und schleusten dieses photoaktivierbare Myosin in Zellen ein. Bestrahlung aktiviert es dann zu einem definierten Zeitpunkt und an definierter Stelle. Auf diese Weise wollen die Wissenschaftler nun in Echtzeit beobachten, was nach einer Aktivierung von Myosin in einer Zelle passiert.

Mehr über Angewandte Chemie
  • News

    Wo bindet Cisplatin?

    Cisplatin gehört zu den am häufigsten verwendeten Medikamenten in der Krebstherapie. Es wirkt durch Quervernetzung von DNA, die den Zelltod auslösen kann. Wo aber im Genom greift Cisplatin vorwiegend an, wo weniger? Chinesische Wissenschaftler haben jetzt ein universelles Testsystem entwick ... mehr

    Kristalluntersuchung in 3D

    Ob beim Aufbau von Knochen, Muschelschalen oder Korallen, Lebewesen sind wahre Meister der Kristallisation. Im Labor ist diese erstaunliche Präzision bisher nicht nachzuahmen. Die Vorgänge und oft auch der genaue Aufbau der Biomineralien sind noch weitgehend unerforscht. Ein internationales ... mehr

    Rote Blutkörperchen zählen

    Ein kleines Blutbild ist eine Routineuntersuchung vor Operationen, bei Infektionen oder bei Verdacht auf eine Vielzahl gesundheitlicher Probleme, wie Anämien und Leukämie. Ein Schlüsselwert ist dabei die Anzahl der roten Blutkörperchen (Erythrozyten). Wissenschaftler von der University of O ... mehr

Mehr über MIT
  • News

    Einfache Dosismessung von Gefahrstoffen

    Der Nachweis eines chemischen Gefahrstoffs kann Leben retten. Amerikanische Wissenschaftler haben ein chemisches Dosimeter mit integrierter Nahfeld-Kommunikation entwickelt, das einfach von einem Smartphone ausgelesen werden kann. Dieses verbesserte CARD-Modell ist aus wenigen Komponenten a ... mehr

    Hochgeschwindigkeits-Mikroskopie bannt gesamte Gehirnaktivität auf Video

    Ein Team um Alipasha Vaziri, Gruppenleiter am Forschungsinstitut für Molekulare Pathologie (IMP) und an den Max F. Perutz Laboratories (MFPL) in Wien, entwickelte gemeinsam mit Kollegen am Massachusetts Institute of Technology (MIT) eine Methode, mit der erstmals die gleichzeitige neuronale ... mehr

    Neuer Weg zur Herstellung von Nanomagneten für die Informationstechnologie

    Ein internationales Forscherteam hat einen neuen Weg gefunden, molekulare Magnete herzustellen. Ihre dünnen Schichtsysteme aus Kobalt und einem organischen Material könnten den Weg ebnen für die Realisierung leistungsfähigerer Speichermedien und schnellerer und energieeffizienterer Prozesso ... mehr

  • Videos

    Plant-to-human communication

    MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone. Video: Melanie Gonick/MITInfrared/fluorescent images: Min Hao Wong mehr

Mehr über University of Virginia
  • News

    Biokunststoff-Produktion auf Umwegen

    Wissenschaftler am Helmholtz-Zentrum für Infektionsforschung (HZI) haben einen wichtigen Fortschritt zum besseren Verständnis von Stoffwechselwegen in Bakterien und deren Nutzung erzielt. Mithilfe von Computermodellen berechnete die von Vitor Martins dos Santos geführte Arbeitsgruppe "Syste ... mehr

Mehr über National Institutes of Health
  • News

    Mikroskop blickt in Zellen lebender Fische

    Mikroskope liefern wertvolle Einsichten in Struktur und Dynamik von Zellen. Insbesondere, wenn diese in Ihrer natürlichen Umgebung verbleiben können. Gerade bei höheren Organismen ist dies jedoch sehr schwierig. Im Magazin Nature Methods stellen Forscher vom Karlsruher Institut für Technolo ... mehr

    Kosten sparen mit optimalen Experimenten

    Das National Institute of Health (NIH) der Vereinigten Staaten finanziert ein gemeinsames Forschungsprojekt der Ruhr-Universität Bochum, der University of California, Los Angeles (UCLA) und der University of New York, Stony Brooks. Ziel ist, die Genauigkeit wissenschaftlicher Experimente zu ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.