Geteiltes Elektron blitzt im Streifflug auf

Ultrakurze Laserpulse lassen sich vielleicht auf vielfältigere Weise erzeugen als gedacht

17.11.2010

Max-Planck-Institut für Kernphysik - Markus Kohler

Zwei Teile ein und desselben Elektrons (hier rot und blau) interferieren beim Auftreffen auf ein Atom und senden dabei einen hochfrequenten laserartigen (kohärenten) Lichtblitz aus.

Physikern könnte sich künftig ein neuer Blick in Atome und Moleküle bieten. Wissenschaftler des Max-Planck-Instituts für Kernphysik haben nämlich einen neuen Weg vorgeschlagen, mit ultrakurzen Laserpulsen Information über Materie zu gewinnen. Sie haben berechnet, dass gerade der Mechanismus, durch den die Lichtpulse entstehen, auch in die Tiefe von Atomen und Molekülen blicken lässt.

Ein verknackster Fuß oder ein unbequem sitzender Weisheitszahn, geröntgt wurde wohl jeder schon einmal. Beim Röntgen durchleuchtet sehr energiereiche Strahlung das Knochengewebe und offenbart dessen Struktur. Doch auch Wissenschaftler sind auf verschiedene Arten von Strahlung angewiesen, wenn sie Materialien oder Prozesse in Molekülen analysieren. Dabei schneiden sie die Eigenschaften ihrer Lichtquellen auf das jeweilige Experiment zu und versuchen ständig, diese zu optimieren.

Viele dieser Verfahren beruhen auf demselben einfachen Prinzip: Materie wird von einer passenden Lichtquelle bestrahlt oder durchleuchtet. Das reflektierte oder gestreute Licht liefert dann ein Abbild der Materiestruktur. Diese Methode stößt jedoch bei sehr kleinen, komplexen Objekten mit sich zeitlich sehr rasch ändernden Strukturen an ihre Grenzen. Ultrakurze Prozesse, die in der Tiefenstruktur einzelner Moleküle oder gar Atome ablaufen, lassen sich damit nicht mehr auflösen.

Vielleicht könnte dem bald Abhilfe geschaffen werden. Zumindest den Berechnungen zufolge, die Forscher um Thomas Pfeifer am Max-Planck-Institut für Kernphysik angestellt haben. Demnach können zwei freie Teilwellen ein und desselben Elektrons ultrakurze Laserblitze erzeugen, wenn sie Atome oder Moleküle nur streifen. Dabei spüren sie zwar das Potenzial der Teilchen, werden aber nicht von ihm eingefangen. Bisher waren die Forscher davon ausgegangen, dass das Elektron mit dem Atomrumpf rekombinieren muss, um diese Art der Strahlung freizusetzen. Außerdem muss das Atom oder Molekül, dessen Potenzial die freien Elektronenwellen durchlaufen, nicht einmal ionisiert sein, um diesen Effekt hervorzurufen.

"Dies eröffnet ganz neue Möglichkeiten zur Strukturanalyse von hochkomplexen Molekülen", sagt Pfeifer. "Denn die emittierten ultrakurzen Laserblitze enthalten Informationen über den räumlichen Potenzialverlauf auch im tiefen Innern eines Atoms oder Moleküls." Die so erzeugte Strahlung könnten Forscher somit selbst schon als Sonde für die Potenzialstruktur verwenden, und dies, ohne in sie einzugreifen und diese womöglich zu verändern.

Ultrakurze Laserpulse erzeugen Physiker schon länger anhand einzelner Elektronen. Dabei machen sie sich die quantenmechanische Wellennatur dieser geladenen Teilchen zu Nutze. Sie erlaubt es ihnen, ein Elektron mit einem extrem starken Laserfeld teilweise von einem Atomrumpf zu lösen, während der restliche Teil desselben Elektrons am Atom verbleibt. Trifft der freie Anteil des Elektrons wieder auf sein Ion, interferiert dieser mit dem gebundenen Eleltronanteil und sendet einen ultrakurzen, kohärenten Lichtblitz aus. Dabei rekombiniert das Elektron wieder vollständig mit dem Ion.

Die so erzeugten Laserpulse von nur Femto- oder Attosekunden Länge (10 hoch -15 beziehungsweise 10 hoch -18 Sekunden) verwenden die Wissenschaftler, um zum Beispiel chemische Prozesse in Molekülen zu studieren. Allerdings erlaubt diese Methode bislang nur den Blick auf die äußersten elektronischen Schichten eines Moleküls. Der Einblick in tiefere Schichten bleibt noch verwehrt.

Die Berechnungen, die maßgeblich von Markus Kohler im Rahmen seiner Doktorarbeit am Max-Planck-Insitut für Kernphysik durchgeführt wurden, stellen nicht nur eine neue experimentelle Methode in Aussicht, die Aufschluss über die Tiefenstruktur von Molekülen geben könnte. Sie verallgemeinern auch das theoretische Verständnis, wie sich ultrakurze Laserpulse von zwei Wellenpaketen eines einzelnen Elektrons erzeugen lassen.

Originalveröffentlichung: Markus C. Kohler, Christian Ott, Philipp Raith, Robert Heck, Iris Schlegel, Christoph H. Keitel, and Thomas Pfeifer; "High Harmonic Generation Via Continuum Wave-Packet Interference"; Physical Review Letters

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
Mehr über Max-Planck-Gesellschaft
  • News

    Forscher entschlüsseln neues Neandertaler-Genom

    Wissenschaftler des Max-Planck-Instituts für evolutionäre Anthropologie in Leipzig haben das Erbgut eines Neandertalers in hoher Qualität entschlüsselt, das 1980 in der Vindija-Höhle in Kroatien entdeckt worden war. Nach dem Erbgut eines Neandertalers aus dem Altai-Gebirge in Sibirien, das ... mehr

    Molekulare Kraftmesser

    Proteine werden häufig als molekulare Maschinen der Zellen beschrieben. Um ihre Funktionsweise zu verstehen, reicht es häufig nicht aus, sich die beteiligten Proteine unter dem Mikroskop anzuschauen. Dort, wo Maschinen arbeiten treten mechanische Kräfte auf, die wiederum Einfluss auf die je ... mehr

    Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

    Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftle ... mehr

Mehr über MPI für Kernphysik
  • News

    Scharfe Röntgenblitze aus dem Atomkern

    Röntgenlicht macht das Unsichtbare sichtbar: Sie erlauben die atomgenaue Aufklärung, wie Materialien aufgebaut sind, in den 1950er-Jahren enthüllten sie etwa die der Doppelhelix-Struktur des Erbgutmoleküls DNS. Mit neuen Röntgenquellen wie dem Freie-Elektronen-Laser XFEL in Hamburg lassen s ... mehr

    Das Proton präzise gewogen

    Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor ... mehr

    Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

    So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Wissenschaftler suchen daher nach dem kleinen Unterschied zwischen einem Teilchen und seinem Antiteilchen, der die Existenz von Materie erklären könnte. Die BASE-Kollaboration am Forschungszent ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.