Geteiltes Elektron blitzt im Streifflug auf

Ultrakurze Laserpulse lassen sich vielleicht auf vielfältigere Weise erzeugen als gedacht

17.11.2010

Max-Planck-Institut für Kernphysik - Markus Kohler

Zwei Teile ein und desselben Elektrons (hier rot und blau) interferieren beim Auftreffen auf ein Atom und senden dabei einen hochfrequenten laserartigen (kohärenten) Lichtblitz aus.

Physikern könnte sich künftig ein neuer Blick in Atome und Moleküle bieten. Wissenschaftler des Max-Planck-Instituts für Kernphysik haben nämlich einen neuen Weg vorgeschlagen, mit ultrakurzen Laserpulsen Information über Materie zu gewinnen. Sie haben berechnet, dass gerade der Mechanismus, durch den die Lichtpulse entstehen, auch in die Tiefe von Atomen und Molekülen blicken lässt.

Ein verknackster Fuß oder ein unbequem sitzender Weisheitszahn, geröntgt wurde wohl jeder schon einmal. Beim Röntgen durchleuchtet sehr energiereiche Strahlung das Knochengewebe und offenbart dessen Struktur. Doch auch Wissenschaftler sind auf verschiedene Arten von Strahlung angewiesen, wenn sie Materialien oder Prozesse in Molekülen analysieren. Dabei schneiden sie die Eigenschaften ihrer Lichtquellen auf das jeweilige Experiment zu und versuchen ständig, diese zu optimieren.

Viele dieser Verfahren beruhen auf demselben einfachen Prinzip: Materie wird von einer passenden Lichtquelle bestrahlt oder durchleuchtet. Das reflektierte oder gestreute Licht liefert dann ein Abbild der Materiestruktur. Diese Methode stößt jedoch bei sehr kleinen, komplexen Objekten mit sich zeitlich sehr rasch ändernden Strukturen an ihre Grenzen. Ultrakurze Prozesse, die in der Tiefenstruktur einzelner Moleküle oder gar Atome ablaufen, lassen sich damit nicht mehr auflösen.

Vielleicht könnte dem bald Abhilfe geschaffen werden. Zumindest den Berechnungen zufolge, die Forscher um Thomas Pfeifer am Max-Planck-Institut für Kernphysik angestellt haben. Demnach können zwei freie Teilwellen ein und desselben Elektrons ultrakurze Laserblitze erzeugen, wenn sie Atome oder Moleküle nur streifen. Dabei spüren sie zwar das Potenzial der Teilchen, werden aber nicht von ihm eingefangen. Bisher waren die Forscher davon ausgegangen, dass das Elektron mit dem Atomrumpf rekombinieren muss, um diese Art der Strahlung freizusetzen. Außerdem muss das Atom oder Molekül, dessen Potenzial die freien Elektronenwellen durchlaufen, nicht einmal ionisiert sein, um diesen Effekt hervorzurufen.

"Dies eröffnet ganz neue Möglichkeiten zur Strukturanalyse von hochkomplexen Molekülen", sagt Pfeifer. "Denn die emittierten ultrakurzen Laserblitze enthalten Informationen über den räumlichen Potenzialverlauf auch im tiefen Innern eines Atoms oder Moleküls." Die so erzeugte Strahlung könnten Forscher somit selbst schon als Sonde für die Potenzialstruktur verwenden, und dies, ohne in sie einzugreifen und diese womöglich zu verändern.

Ultrakurze Laserpulse erzeugen Physiker schon länger anhand einzelner Elektronen. Dabei machen sie sich die quantenmechanische Wellennatur dieser geladenen Teilchen zu Nutze. Sie erlaubt es ihnen, ein Elektron mit einem extrem starken Laserfeld teilweise von einem Atomrumpf zu lösen, während der restliche Teil desselben Elektrons am Atom verbleibt. Trifft der freie Anteil des Elektrons wieder auf sein Ion, interferiert dieser mit dem gebundenen Eleltronanteil und sendet einen ultrakurzen, kohärenten Lichtblitz aus. Dabei rekombiniert das Elektron wieder vollständig mit dem Ion.

Die so erzeugten Laserpulse von nur Femto- oder Attosekunden Länge (10 hoch -15 beziehungsweise 10 hoch -18 Sekunden) verwenden die Wissenschaftler, um zum Beispiel chemische Prozesse in Molekülen zu studieren. Allerdings erlaubt diese Methode bislang nur den Blick auf die äußersten elektronischen Schichten eines Moleküls. Der Einblick in tiefere Schichten bleibt noch verwehrt.

Die Berechnungen, die maßgeblich von Markus Kohler im Rahmen seiner Doktorarbeit am Max-Planck-Insitut für Kernphysik durchgeführt wurden, stellen nicht nur eine neue experimentelle Methode in Aussicht, die Aufschluss über die Tiefenstruktur von Molekülen geben könnte. Sie verallgemeinern auch das theoretische Verständnis, wie sich ultrakurze Laserpulse von zwei Wellenpaketen eines einzelnen Elektrons erzeugen lassen.

Originalveröffentlichung: Markus C. Kohler, Christian Ott, Philipp Raith, Robert Heck, Iris Schlegel, Christoph H. Keitel, and Thomas Pfeifer; "High Harmonic Generation Via Continuum Wave-Packet Interference"; Physical Review Letters

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
Mehr über Max-Planck-Gesellschaft
  • News

    Auf den Spuren eines Spurengases

    Um Aussagen über aktuelle und zukünftige Luftverschmutzungen zu treffen, verwenden Wissenschaftler Modelle, die die Erdatmosphäre simulieren. In diese Modelle fließen viele Informationen wie meteorologische Daten über Temperatur, Feuchte oder Luftströmung ein. Hinzu kommen auch möglichst pr ... mehr

    Neue Färbemethode für das Gehirn

    Lernen, Denken, Fühlen, aber auch viele neurologische Krankheiten haben ihren Ursprung in den Verbindungen zwischen Nervenzellen. Die Kenntnis darüber, welche Nervenzelle wo mit welchen Zellen verbunden ist, würde unser Wissen über die Funktion des Gehirns deutlich voranbringen. Wissenschaf ... mehr

    Gerüstverbindungen: metallorganischer Strukturwandel

    Dass ein Gramm einer Substanz eine Oberfläche annähernd so groß wie ein Fußballfeld besitzt, ist kaum vorstellbar. Doch genau das ist bei metallorganischen Gerüstverbindungen der Fall. Daher könnten diese MOFs (nach engl: metal-organic framework) einmal gute Dienste leisten, wenn es darum g ... mehr

Mehr über MPI für Kernphysik
  • News

    Spektroskopie höchster Präzision mit gefrorenen hochgeladenen Ionen

    Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt in Braunschweig und der Universität Aarhus in Dänemark haben erstmals die Coulomb-Kristallisierung von hochgeladenen Ionen (Highly-Charged Ions = HCIs) demonstriert. In einer ult ... mehr

    Billardspiel im Atom

    Trifft ein intensiver Laserpuls auf ein Atom, kommt Bewegung in den Mikrokosmos. Nicht selten wird dann ein Elektron aus dem Atom herausgeschleudert und dieses ionisiert. Manchmal passiert aber auch noch mehr: nämlich eine so genannte Doppelionisation. Dann löst das Licht nicht nur ein sond ... mehr

    Präzisionsmassenmessung an Palladium-110 weisen Weg zur Natur der Neutrinos

    Ist das Neutrino sein eigenes Antiteilchen? Der Nachweis des neutrinolosen doppelten Betazerfall würde diese Frage klären. Neue präzise Massenmessungen der Zerfallsenergie von Palladium-110, durchgeführt von Forschern des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.