Geteiltes Elektron blitzt im Streifflug auf

Ultrakurze Laserpulse lassen sich vielleicht auf vielfältigere Weise erzeugen als gedacht

17.11.2010

Max-Planck-Institut für Kernphysik - Markus Kohler

Zwei Teile ein und desselben Elektrons (hier rot und blau) interferieren beim Auftreffen auf ein Atom und senden dabei einen hochfrequenten laserartigen (kohärenten) Lichtblitz aus.

Physikern könnte sich künftig ein neuer Blick in Atome und Moleküle bieten. Wissenschaftler des Max-Planck-Instituts für Kernphysik haben nämlich einen neuen Weg vorgeschlagen, mit ultrakurzen Laserpulsen Information über Materie zu gewinnen. Sie haben berechnet, dass gerade der Mechanismus, durch den die Lichtpulse entstehen, auch in die Tiefe von Atomen und Molekülen blicken lässt.

Ein verknackster Fuß oder ein unbequem sitzender Weisheitszahn, geröntgt wurde wohl jeder schon einmal. Beim Röntgen durchleuchtet sehr energiereiche Strahlung das Knochengewebe und offenbart dessen Struktur. Doch auch Wissenschaftler sind auf verschiedene Arten von Strahlung angewiesen, wenn sie Materialien oder Prozesse in Molekülen analysieren. Dabei schneiden sie die Eigenschaften ihrer Lichtquellen auf das jeweilige Experiment zu und versuchen ständig, diese zu optimieren.

Viele dieser Verfahren beruhen auf demselben einfachen Prinzip: Materie wird von einer passenden Lichtquelle bestrahlt oder durchleuchtet. Das reflektierte oder gestreute Licht liefert dann ein Abbild der Materiestruktur. Diese Methode stößt jedoch bei sehr kleinen, komplexen Objekten mit sich zeitlich sehr rasch ändernden Strukturen an ihre Grenzen. Ultrakurze Prozesse, die in der Tiefenstruktur einzelner Moleküle oder gar Atome ablaufen, lassen sich damit nicht mehr auflösen.

Vielleicht könnte dem bald Abhilfe geschaffen werden. Zumindest den Berechnungen zufolge, die Forscher um Thomas Pfeifer am Max-Planck-Institut für Kernphysik angestellt haben. Demnach können zwei freie Teilwellen ein und desselben Elektrons ultrakurze Laserblitze erzeugen, wenn sie Atome oder Moleküle nur streifen. Dabei spüren sie zwar das Potenzial der Teilchen, werden aber nicht von ihm eingefangen. Bisher waren die Forscher davon ausgegangen, dass das Elektron mit dem Atomrumpf rekombinieren muss, um diese Art der Strahlung freizusetzen. Außerdem muss das Atom oder Molekül, dessen Potenzial die freien Elektronenwellen durchlaufen, nicht einmal ionisiert sein, um diesen Effekt hervorzurufen.

"Dies eröffnet ganz neue Möglichkeiten zur Strukturanalyse von hochkomplexen Molekülen", sagt Pfeifer. "Denn die emittierten ultrakurzen Laserblitze enthalten Informationen über den räumlichen Potenzialverlauf auch im tiefen Innern eines Atoms oder Moleküls." Die so erzeugte Strahlung könnten Forscher somit selbst schon als Sonde für die Potenzialstruktur verwenden, und dies, ohne in sie einzugreifen und diese womöglich zu verändern.

Ultrakurze Laserpulse erzeugen Physiker schon länger anhand einzelner Elektronen. Dabei machen sie sich die quantenmechanische Wellennatur dieser geladenen Teilchen zu Nutze. Sie erlaubt es ihnen, ein Elektron mit einem extrem starken Laserfeld teilweise von einem Atomrumpf zu lösen, während der restliche Teil desselben Elektrons am Atom verbleibt. Trifft der freie Anteil des Elektrons wieder auf sein Ion, interferiert dieser mit dem gebundenen Eleltronanteil und sendet einen ultrakurzen, kohärenten Lichtblitz aus. Dabei rekombiniert das Elektron wieder vollständig mit dem Ion.

Die so erzeugten Laserpulse von nur Femto- oder Attosekunden Länge (10 hoch -15 beziehungsweise 10 hoch -18 Sekunden) verwenden die Wissenschaftler, um zum Beispiel chemische Prozesse in Molekülen zu studieren. Allerdings erlaubt diese Methode bislang nur den Blick auf die äußersten elektronischen Schichten eines Moleküls. Der Einblick in tiefere Schichten bleibt noch verwehrt.

Die Berechnungen, die maßgeblich von Markus Kohler im Rahmen seiner Doktorarbeit am Max-Planck-Insitut für Kernphysik durchgeführt wurden, stellen nicht nur eine neue experimentelle Methode in Aussicht, die Aufschluss über die Tiefenstruktur von Molekülen geben könnte. Sie verallgemeinern auch das theoretische Verständnis, wie sich ultrakurze Laserpulse von zwei Wellenpaketen eines einzelnen Elektrons erzeugen lassen.

Originalveröffentlichung: Markus C. Kohler, Christian Ott, Philipp Raith, Robert Heck, Iris Schlegel, Christoph H. Keitel, and Thomas Pfeifer; "High Harmonic Generation Via Continuum Wave-Packet Interference"; Physical Review Letters

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
Mehr über Max-Planck-Gesellschaft
  • News

    „Sehhilfe“ für massenspektrometrische Bildgebung

    Die Analyse von biologischen Gewebeproben mit unebenen Oberflächen stellte bislang ein großes Problem dar. Forscher am Max-Planck-Institut für chemische Ökologie in Jena haben ein massenspektrometrisches Verfahren weiterentwickelt, mit dem nun auch die Verteilung von Molekülen auf welligen, ... mehr

    Ein tiefer Blick ins Protein

    Lichtmikroskope erlauben immer genauere Blicke in die Welt des Allerkleinsten. Nun haben Wissenschaftler des Max-Planck-Instituts für die Physik des Lichts in Erlangen mit der sogenannten COLD-Methode erstmals Strukturen unterhalb eines Nanometers in einem Protein sichtbar gemacht. Diese De ... mehr

    25 Prozent der Proteinschalter arbeiten nach der inneren Uhr der Zelle

    Zirkadian ist die lateinische Bezeichnung für „ungefähr ein Tag“. Der zirkadiane Rhythmus hat sich entwickelt, damit sich unser Leben an die täglichen Umweltveränderungen anpassen kann: am Tag ist es hell und wärmer und nachts ist es dunkel und kühler. Wissenschaftler vom Max-Planck-Institu ... mehr

Mehr über MPI für Kernphysik
  • News

    Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

    So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Wissenschaftler suchen daher nach dem kleinen Unterschied zwischen einem Teilchen und seinem Antiteilchen, der die Existenz von Materie erklären könnte. Die BASE-Kollaboration am Forschungszent ... mehr

    Spektroskopie höchster Präzision mit gefrorenen hochgeladenen Ionen

    Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt in Braunschweig und der Universität Aarhus in Dänemark haben erstmals die Coulomb-Kristallisierung von hochgeladenen Ionen (Highly-Charged Ions = HCIs) demonstriert. In einer ult ... mehr

    Billardspiel im Atom

    Trifft ein intensiver Laserpuls auf ein Atom, kommt Bewegung in den Mikrokosmos. Nicht selten wird dann ein Elektron aus dem Atom herausgeschleudert und dieses ionisiert. Manchmal passiert aber auch noch mehr: nämlich eine so genannte Doppelionisation. Dann löst das Licht nicht nur ein sond ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.