Warum Dünnschichtsolarzellen aus Silizium altern

Forschungsministerium bewilligt Millioneninvestition, um dieser Frage nachzugehen

08.07.2009

Es ist sei langem bekannt - doch keiner weiß, warum Silizium altert und die Stromausbeute dünner, amorpher Siliziumschichten in den ersten tausend Betriebsstunden stetig sinkt. Im Verbundprojekt EPR-Solar haben sich deshalb Wissenschaftler aus fünf Instituten zusammengeschlossen, um diesem Geheimnis mithilfe der EPR-Spektroskopie auf die Spur zu kommen. Das Bundesforschungsministerium (BMBF) fördert das Projekt seit Anfang letzten Jahres und hat nun zirka 1,6 Millionen Euro zusätzlich bereitgestellt. Mit diesen Mitteln wollen HZB-Wissenschaftler um Klaus Lips und Alexander Schnegg ein spezielles Hochfeld-Spektrometer finanzieren.

„Das ist großartig. Mit diesem Gerät werden wir Einzelheiten über die innere Struktur des Siliziummaterials erfahren, die uns bislang nicht zugänglich sind“, sagt Klaus Lips, der Koordinator des EPR-Solar-Projekts. Neben dem HZB sind an dem Netzwerkprojekt beteiligt: das Forschungszentrum Jülich, die Freie Universität Berlin, das Max-Planck-Institut für Eisenforschung und die TU München.

Das Erfolgsrezept der Solarzelle ist ihre Fähigkeit, Sonnenlicht direkt in elektrischen Strom umzuwandeln. Das funktioniert, weil im Inneren des Materials Ladungsträger erzeugt werden, die ihre Energie durch das Sonnenlicht erhalten und sich dann wie kleine Fahrzeuge durch die Solarzelle bewegen, bis sie in einen Stromkreis eingespeist werden. Allerdings verschwinden in den heutigen Solarzellen einige Ladungen unterwegs, sodass der Wirkungsgrad und somit der Gebrauchswert der Solarzelle sinkt. Für die Solarindustrie ist dies ein echtes Problem, das unbedingt gelöst werden muss – gerade weil die Produktionskapazität für Silizium-Dünnschichtzellen derzeit stetig erhöht wird. Ursache für das Verschwinden der Ladungsträger sind Materialfehler in der Halbleiterstruktur. Um diese erkennen und vermeiden zu können, müssen die Forscher die innere Struktur der Solarzelle mit einer Genauigkeit von weniger als einem Millionstel Millimeter vermessen.

Bei der EPR-Spektroskopie (EPR steht für Elektronenparamagnetische Resonanz) nutzen sie dazu eine besondere quantenmechanische Eigenschaft geladener Teilchen, ihren Eigendrehimpuls (Spin). Wird der Spin einem Magnetfeld ausgesetzt, verhält er sich wie eine mikroskopische Kompassnadel und richtet sich parallel zu dem Magnetfeld aus. Nun wird die Probe mit Mikrowellen bestrahlt. Bei ganz bestimmten Magnetfeldern tritt ein Resonanzeffekt ein, bei dem sich die Kompassnadeln um 180 Grad drehen (Spinflip). Die dafür aufgewendete Energie lässt sich messen und gibt Auskunft über die unmittelbare Umgebung der Elektronen. Am Computer zusammengesetzt, ergeben sich aus diesen Information detaillierte Strukturkarten der Solarzelle einschließlich der Materialfehler. In der Regel gilt: je höher das angelegte Magnetfeld und je höher die Frequenz der verwendeten Strahlung, umso genauer werden die gewonnenen Strukturinformationen. Allerdings steigt der Preis eines Spektrometers ebenfalls drastisch an, je höher die Magnetfelder werden. Und nicht nur das. Auch der Bau solcher Geräte mit der entsprechenden Genauigkeit ist eine technische Herausforderung.

Den Rekord für ein kommerziell erhältliches EPR-Spektrometer hält ein kürzlich entwickeltes Gerät der in Karlsruhe ansässigen Firma Bruker BIOSpin, dessen Magnetfeld mit einer Stärke von 12 Tesla etwa 30 mal höher ist als bei herkömmlichen Spektrometern. Eine weitere Besonderheit des Geräts ist die verwendete Strahlungsquelle, denn die Proben können mit Frequenzen zwischen Mikrowellen- und Infrarotlicht bestrahlt werden.

Aufbauend auf den bisherigen Erfolgen von EPR-Solar und ihren wissenschaftlichen Vorarbeiten konnten die HZB-Wissenschaftler das BMBF überzeugen, das Berliner Institut mit diesem Gerät auszustatten und hier den Netzwerkpartnern zur Verfügung zu stellen. Erst kürzlich haben Schnegg und seine Kollegen einen speziellen Messplatz am Synchrotronspeicherring BESSY II aufgebaut, wo EPR-Messungen bei unterschiedlichen Frequenzen im Terahertz-Bereich durchgeführt werden können.

Das neue Bruker-Gerät liefert hochfrequente Strahlung bei 263 Gigahertz (0,263 Terahertz). Damit können EPR-Spektren in diesem Frequenzbereich mit höchster Genauigkeit aufgenommen werden. Somit liefert das BESSY-Gerät den breiten Überblick, während das neue Spektrometer einzelne Details der Energielandschaft hochaufgelöst darstellen kann. „Durch die unerreichten Eigenschaften des neuen Geräts und die Kombination mit dem Terahertz-Messplatz bei BESSY II wird das HZB seine Führungsposition bei der Entwicklung modernster EPR-Methoden für die Solarzellenforschung weiter ausbauen“, sagt Alexander Schnegg.

Fakten, Hintergründe, Dossiers
  • Bruker
  • TU München
  • Stärke
  • Solarzellen
  • Solarindustrie
  • Messen
  • Materialfehler
  • Freie Universität Berlin
  • Forschungszentrum Jülich
Mehr über Bruker
Mehr über Forschungszentrum Jülich
  • News

    Lauschangriff auf Nervenzellen

    Unablässig laufen elektrische Impulse über die Bahnen des menschlichen Nervensystems. Wissenschaftler des Forschungszentrums Jülich, der TU München und vom niederländischen Leiden Institute of Chemistry haben Mikrosensoren entwickelt, die diese Signale der Nervenzellen belauschen können. Fü ... mehr

    Neue Methode für die Arzneiforschung

    Medikamente können die Struktur von Zellmembranen verändern. Das kann die Wirksamkeit der Arzneien beeinträchtigen oder unerwünschte Nebenwirkungen auslösen. Bisher sind diese strukturellen Veränderungen von Zellmembranen durch medizinische Wirkstoffe jedoch nur wenig untersucht. Forscher a ... mehr

    Schärfstes Bild von Alzheimer-Fibrillen zeigt bislang unbekannte Details

    Ein deutsch-niederländisches Forscherteam hat die Struktur einer Amyloid-Fibrille in bislang unerreichter Auflösung entschlüsselt. Fasern aus dem körpereigenen Protein Amyloid-beta (Aß) sind der Hauptbestandteil krankhafter Eiweißablagerungen im Gehirn. Diese gelten als zentrales Kennzeiche ... mehr

Mehr über Bundesministerium für Bildung und Forschung
Mehr über Freie Universität Berlin
  • News

    Wie Schalter in Bakterien funktionieren

    Viele Bakterien besitzen molekulare Kontrollelemente, über die sie Gene an- und abschalten können. Diese Riboschalter eröffnen neue Möglichkeiten bei der Entwicklung von Antibiotika oder auch zum Aufspüren und Abbauen von Umweltgiften. Wie die Riboschalter funktionieren, haben Forscher des ... mehr

    Zucker im Windkanal: Durchbruch für die Glykobiologie

    Einem Berliner Forscherteam um Kevin Pagel von der Freien Universität Berlin und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft und Peter Seeberger vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der Freien Universität Berlin haben die Analyse von Kohlenh ... mehr

    Ausgezeichnet: DNA-Barcoding zur Gewässergüteanalyse mit Kieselalgen

    Weil er das DNA-Barcoding als neue Methode für Gewässergüteanalysen mit Kieselalgen etablierte, erhält Dr. Jonas Zimmermann den diesjährigen Horst Wiehe-Förderpreis der Deutschen Botanischen Gesellschaft (DBG). In seiner Dissertation identifizierte Zimmermann diejenigen Abschnitte auf der E ... mehr

Mehr über TU München
  • News

    Sichtbare Signale aus Hirn und Herz

    Über die Menge an Kalzium in und um Zellen, werden wichtige Prozesse im Körper gesteuert. Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München entwickelte jetzt das erste Sensormolekül, dass Kalzium mit der strahlungsfreien Bildgebungsmethode Optoakustik im ... mehr

    Viral oder bakteriell? Neuer Test bei Infektionen

    Zunehmende Antibiotika-Resistenzen sind ein Problem. Um unnötige Antibiotikagaben zu vermeiden, entwickelten Münchner Studierende ein Testsystem, das effizient zwischen bakteriellen und viralen Infektionen unterschieden kann. Dafür gab es den zweiten Platz beim internationalen iGEM-Wettbewe ... mehr

    Neues Nano-CT liefert hochauflösende 3D-Röntgenbilder

    Computertomographie (CT) ist in Krankenhäusern eine Standardprozedur. Für extrem kleine Untersuchungsgegenstände war sie aber bislang nicht geeignet. Im Fachmagazin PNAS beschreibt ein Team der Technischen Universität München (TUM) ein Nano-CT-Gerät, das dreidimensionale Röntgenbilder mit b ... mehr

Mehr über MPI für Eisenforschung
  • News

    Nanoperlen für die Stahlschmiede

    Versetzungen können Leben retten. Denn die eindimensionalen Defekte in einem Metall spielen eine große Rolle, wenn sich das Material verformt. Etwa dann, wenn ein Autoblech in einem Unfall zerknautscht wird, dabei einen Großteil der Aufprallenergie abfängt und die Insassen hoffentlich vor V ... mehr

    Mit Hilfe der Elektrochemie zu mehr Nachhaltigkeit

    CO2 ist kein Abfallprodukt, sondern ein wertvoller chemischer Rohstoff. Man muss ihn nur zu nutzen wissen: Mit Hilfe von Katalysatoren kann Kohlendioxid z.B. zu Methanol reduziert werden, welches wiederum in Direkt-Methanol-Brennstoffzellen (DMFC) Anwendung findet. Effektive Katalysatoren s ... mehr

    Nanostrukturen erstmals in 3D

    In der Abteilung Mikrostrukturphysik und Umformtechnik des Max-Planck-Instituts für Eisenforschung in Düsseldorf wurde das weltweit erste Elektronenmikroskop eingeführt und in Betrieb genommen, mit dem man gleichzeitig und automatisiert den Phasengehalt, die Textur und die Grenzflächen von ... mehr

Mehr über Helmholtz-Zentrum Berlin für Materialien und Energie
Themenschwerpunkte
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.