Warum Dünnschichtsolarzellen aus Silizium altern

Forschungsministerium bewilligt Millioneninvestition, um dieser Frage nachzugehen

08.07.2009: Es ist sei langem bekannt - doch keiner weiß, warum Silizium altert und die Stromausbeute dünner, amorpher Siliziumschichten in den ersten tausend Betriebsstunden stetig sinkt. Im Verbundprojekt EPR-Solar haben sich deshalb Wissenschaftler aus fünf Instituten zusammengeschlossen, um diesem Geheimnis mithilfe der EPR-Spektroskopie auf die Spur zu kommen. Das Bundesforschungsministerium (BMBF) fördert das Projekt seit Anfang letzten Jahres und hat nun zirka 1,6 Millionen Euro zusätzlich bereitgestellt. Mit diesen Mitteln wollen HZB-Wissenschaftler um Klaus Lips und Alexander Schnegg ein spezielles Hochfeld-Spektrometer finanzieren.

„Das ist großartig. Mit diesem Gerät werden wir Einzelheiten über die innere Struktur des Siliziummaterials erfahren, die uns bislang nicht zugänglich sind“, sagt Klaus Lips, der Koordinator des EPR-Solar-Projekts. Neben dem HZB sind an dem Netzwerkprojekt beteiligt: das Forschungszentrum Jülich, die Freie Universität Berlin, das Max-Planck-Institut für Eisenforschung und die TU München.

Das Erfolgsrezept der Solarzelle ist ihre Fähigkeit, Sonnenlicht direkt in elektrischen Strom umzuwandeln. Das funktioniert, weil im Inneren des Materials Ladungsträger erzeugt werden, die ihre Energie durch das Sonnenlicht erhalten und sich dann wie kleine Fahrzeuge durch die Solarzelle bewegen, bis sie in einen Stromkreis eingespeist werden. Allerdings verschwinden in den heutigen Solarzellen einige Ladungen unterwegs, sodass der Wirkungsgrad und somit der Gebrauchswert der Solarzelle sinkt. Für die Solarindustrie ist dies ein echtes Problem, das unbedingt gelöst werden muss – gerade weil die Produktionskapazität für Silizium-Dünnschichtzellen derzeit stetig erhöht wird. Ursache für das Verschwinden der Ladungsträger sind Materialfehler in der Halbleiterstruktur. Um diese erkennen und vermeiden zu können, müssen die Forscher die innere Struktur der Solarzelle mit einer Genauigkeit von weniger als einem Millionstel Millimeter vermessen.

Bei der EPR-Spektroskopie (EPR steht für Elektronenparamagnetische Resonanz) nutzen sie dazu eine besondere quantenmechanische Eigenschaft geladener Teilchen, ihren Eigendrehimpuls (Spin). Wird der Spin einem Magnetfeld ausgesetzt, verhält er sich wie eine mikroskopische Kompassnadel und richtet sich parallel zu dem Magnetfeld aus. Nun wird die Probe mit Mikrowellen bestrahlt. Bei ganz bestimmten Magnetfeldern tritt ein Resonanzeffekt ein, bei dem sich die Kompassnadeln um 180 Grad drehen (Spinflip). Die dafür aufgewendete Energie lässt sich messen und gibt Auskunft über die unmittelbare Umgebung der Elektronen. Am Computer zusammengesetzt, ergeben sich aus diesen Information detaillierte Strukturkarten der Solarzelle einschließlich der Materialfehler. In der Regel gilt: je höher das angelegte Magnetfeld und je höher die Frequenz der verwendeten Strahlung, umso genauer werden die gewonnenen Strukturinformationen. Allerdings steigt der Preis eines Spektrometers ebenfalls drastisch an, je höher die Magnetfelder werden. Und nicht nur das. Auch der Bau solcher Geräte mit der entsprechenden Genauigkeit ist eine technische Herausforderung.

Den Rekord für ein kommerziell erhältliches EPR-Spektrometer hält ein kürzlich entwickeltes Gerät der in Karlsruhe ansässigen Firma Bruker BIOSpin, dessen Magnetfeld mit einer Stärke von 12 Tesla etwa 30 mal höher ist als bei herkömmlichen Spektrometern. Eine weitere Besonderheit des Geräts ist die verwendete Strahlungsquelle, denn die Proben können mit Frequenzen zwischen Mikrowellen- und Infrarotlicht bestrahlt werden.

Aufbauend auf den bisherigen Erfolgen von EPR-Solar und ihren wissenschaftlichen Vorarbeiten konnten die HZB-Wissenschaftler das BMBF überzeugen, das Berliner Institut mit diesem Gerät auszustatten und hier den Netzwerkpartnern zur Verfügung zu stellen. Erst kürzlich haben Schnegg und seine Kollegen einen speziellen Messplatz am Synchrotronspeicherring BESSY II aufgebaut, wo EPR-Messungen bei unterschiedlichen Frequenzen im Terahertz-Bereich durchgeführt werden können.

Das neue Bruker-Gerät liefert hochfrequente Strahlung bei 263 Gigahertz (0,263 Terahertz). Damit können EPR-Spektren in diesem Frequenzbereich mit höchster Genauigkeit aufgenommen werden. Somit liefert das BESSY-Gerät den breiten Überblick, während das neue Spektrometer einzelne Details der Energielandschaft hochaufgelöst darstellen kann. „Durch die unerreichten Eigenschaften des neuen Geräts und die Kombination mit dem Terahertz-Messplatz bei BESSY II wird das HZB seine Führungsposition bei der Entwicklung modernster EPR-Methoden für die Solarzellenforschung weiter ausbauen“, sagt Alexander Schnegg.

Mehr über Bruker
Mehr über Forschungszentrum Jülich
  • News

    Moleküle bewegen mit Fingerspitzengefühl

    Jülicher Wissenschaftler haben eine neue Ansteuerung für Rastertunnelmikroskope entwickelt, die es ihnen ermöglicht, einzelne große Moleküle interaktiv mit der Hand zu verschieben. Bisher waren nur simple, starr programmierte Bewegungen möglich. Zum Test haben die Forscher aus einer einlagi ... mehr

    Durchbruch in der Elektronenmikroskopie

    Stellen Sie sich vor, Sie wollten anhand eines einzelnen Fotos von der Vorderseite eines Hauses herausfinden, wie das Gebäude von hinten aussieht, ob es irgendwelche Anbauten oder Schäden am Mauerwerk gibt und wie der Keller aufgeteilt ist. Unmöglich? Nicht in der Nanowelt. Wissenschaftler ... mehr

    Mit leuchtenden Bakterien zur eigenen Firma

    Im April wurden die Jülicher Forscher Dr. Stephan Binder und Dr. Georg Schaumann aus dem Institut für Bio- und Geowissenschaften – Biotechnologie (IBG-1) als eines von sieben Gewinnerteams des Gründungswettbewerbs "Gründungsoffensive Biotechnologie GO-Bio" des BMBF ausgezeichnet. Sie haben ... mehr

Mehr über Bundesministerium für Bildung und Forschung
Mehr über Freie Universität Berlin
Mehr über TU München
  • News

    Live-Schaltung ins Innere der Batterie

    Lithium-Ionen-Batterien gelten als Energiespeicher der Zukunft und sind vor allem für die Elektromobilität unverzichtbar. Sie haben die Fähigkeit, viel Energie zu speichern, sind aber vergleichsweise kompakt und leicht. Wenn sich beim Laden der Batterie allerdings metallisches Lithium bilde ... mehr

    Genomprojekt liefert Sequenzdaten der wichtigsten Fleisch- und Milchrinderrassen

    Mit einem internationalen Kooperationsprojekt, dem „1000-Bullen-Genom-Projekt“, soll die Züchtung spezifischer Merkmale bei Fleisch- und Milchrindern vereinfacht werden, um damit Gesundheit, Wohlergehen und Produktivität der Tiere zu verbessern. Die Resultate der ersten Projektphase – basie ... mehr

    Geruchscode von Lebensmitteln entschlüsselt

    Erdbeeren, Kaffee, Grillfleisch oder frisch gekochte Kartoffeln: Wie kommt es, dass man diese Lebensmittel an ihrem Geruch erkennt? Mehr als 10.000 verschiedene flüchtige Stoffe kommen in Lebensmitteln vor. Doch nur etwa 230 davon prägen das Aroma unserer häufigsten Lebensmittel. Den typisc ... mehr

Mehr über MPI für Eisenforschung
  • News

    Mit Hilfe der Elektrochemie zu mehr Nachhaltigkeit

    CO2 ist kein Abfallprodukt, sondern ein wertvoller chemischer Rohstoff. Man muss ihn nur zu nutzen wissen: Mit Hilfe von Katalysatoren kann Kohlendioxid z.B. zu Methanol reduziert werden, welches wiederum in Direkt-Methanol-Brennstoffzellen (DMFC) Anwendung findet. Effektive Katalysatoren s ... mehr

    Nanostrukturen erstmals in 3D

    In der Abteilung Mikrostrukturphysik und Umformtechnik des Max-Planck-Instituts für Eisenforschung in Düsseldorf wurde das weltweit erste Elektronenmikroskop eingeführt und in Betrieb genommen, mit dem man gleichzeitig und automatisiert den Phasengehalt, die Textur und die Grenzflächen von ... mehr

Mehr über Helmholtz-Zentrum Berlin für Materialien und Energie
Themenschwerpunkte
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.